There was an error in this gadget

ELECTRONICS SEMINORS

SMART DUST:
Seminar Description:Smart dust is tiny electronic devices designed to capture mountains of information about their surroundings while literally floating on air. Nowadays, sensors, computers and communicators are shrinking down to ridiculously small sizes. If all of these are packed into a single tiny device, it can open up new dimensions in the field of communications.The idea behind 'smart dust' is to pack sophisticated sensors, tiny computers and wireless communicators in to a cubic-millimeter mote to form the basis of integrated, massively distributed sensor networks. They will be light enough to remain suspended in air for hours. As the motes drift on wind, they can monitor the environment for light, sound, temperature, chemical composition and a wide range of other information, and beam that data back to the base station, miles away. 

 Night Vision Technology:
Seminar Description:Night vision technology, by definition, literally allows one to see in the dark. Originally developed for military use, it has provided the United States with a strategic military advantage, the value of which can be measured in lives. Federal and state agencies now routinely utilize the technology for site security, surveillance as well as search and rescue. Night vision equipment has evolved from bulky optical instruments in lightweight goggles through the advancement of image intensification technology.The first thing you probably think of when you see the words night vision is a spy or action movie you've seen, in which someone straps on a pair of night-vision goggles to find someone else in a dark building on a moonless night. With the proper night-vision equipment, you can see a person standing over 200 yards (183 m) away on a moonless, cloudy night! Night vision can work in two very different ways, depending on the technology used. * Image enhancement - This works by collecting the tiny amounts of light, including the lower portion of the infrared light spectrum, that are present but may be imperceptible to our eyes, and amplifying it to the point that we can easily observe the image. * Thermal imaging - This technology operates by capturing the upper portion of the infrared light spectrum, which is emitted as heat by objects instead of simply reflected as light. Hotter objects, such as warm bodies, emit more of this light than cooler objects like trees or buildings.
AUTOMATIC VEHICLE LOCATOR:
Seminar Description:Automatic vehicle location (AVL) is a computer -based vehicle tracking system. For transit, the actual real-time position of each vehicle is determined and relayed to a control center. Actual position determination and relay techniques vary, depending on the needs of the transit system and the technologies employed. Transit agencies often incorporate other advanced system features in conjunction with AVL system implementation. Simple AVL systems include: computer -aided dispatch software, mobile data terminals, emergency alarms, and digital communications. More sophisticated AVL Systems may integrate: real-time passenger information,automatic passenger counters, and automated fare payment systems. Other components that may be integrated with AVL systems include automatic stop annunciation, automated destination signs, Vehicle component monitoring, and Traffic signal priority. AVL technology allows improved schedule adherence and timed transfers, more accessible passenger information, increased availability of data for transit management and planning, efficiency/productivity improvements in transit services .

Chameleon Chips:
Seminar Description:Chameleon chips are chips whose circuitry can be tailored specifically for the problem at hand. Chameleon chips would be an extension of what can already be done with field-programmable gate arrays (FPGAS). An FPGA is covered with a grid of wires. At each crossover, there's a switch that can be semipermanently opened or closed by sending it a special signal. Usually the chip must first be inserted in a little box that sends the programming signals. But now, labs in Europe, Japan, and the U.S. are developing techniques to rewire FPGA-like chips anytime--and even software that can map out circuitry that's optimized for specific problems. 
INTELLIGENT WIRELESS VIDEO CAMERA USING COMPUTER:
Seminar Description:The intelligent wireless video camera described in this paper is designed using wireless video monitoring system, for detecting the presence of a person who is inside the restricted zone. This type of automatic wireless video monitors is quite suitable for the isolated restricted zones, where the tight security is required.The principle of remote sensing is utilized in this, to detect the presence of any person who is very near to reference point with in the zone. A video camera collects the images from the reference points and then converts into electronic signals. The collected images are converted from visible light into invisible electronic signals inside a solid-state imager. These signals are transmitted to the monitor.  

Remote Media Immersion (RMI):
Seminar Description:The charter of the Integrated Media Systems Center (IMSC) at the University of Southern California (USC) is to investigate new methods and technologies that combine multiple modalities into highly effective, immersive technologies, applications and environments. One of the results of these research efforts is the Remote Media Immersion (RMI) system. The goal of the RMI is to create and develop a complete aural and visual environment that places a participant or group of participants in a virtual space where they can experience events that occurred in different physical locations. RMI technology can effectively overcome the barriers of time and space to enable, on demand, the realistic recreation of visual and aural cues recorded in widely separated locations.

Optical Switching:
Seminar Description:Explosive information demand in the internet world is creating enormous needs for capacity expansion in next generation telecommunication networks. It is expected that the data- oriented network traffic will double every year. Optical networks are widely regarded as the ultimate solution to the bandwidth needs of future communication systems. Optical fiber links deployed between nodes are capable to carry terabits of information but the electronic switching at the nodes limit the bandwidth of a network. Optical switches at the nodes will overcome this limitation. With their improved efficiency and lower costs, Optical switches provide the key to both manage the new capacity Dense Wavelength Division Multiplexing (DWDM) links as well as gain a competitive advantage for provision of new band width hungry services. However, in an optically switched network the challenge lies in overcoming signal impairment and network related parameters. Let us discuss the present status, advantages and challenges and future trends in optical switches.

NAVBELT AND GUIDECANE:
Seminar Description: Recent revolutionary achievements in robotics and bioengineering have given scientists and engineers great opportunities and challenges to serve humanity. This seminar is about “NAVBELT AND GUIDECANE”, which are two computerised devices based on advanced mobile robotic navigation for obstacle avoidance useful for visually impaired people. This is “Bioengineering for people with disabilities”. NavBelt is worn by the user like a belt and is equipped with an array of ultrasonic sensors. It provides acoustic signals via a set of stereo earphones that guide the user around obstacles or displace a virtual acoustic panoramic image of the traveller’s surroundings. One limitation of the NavBelt is that it is exceedingly difficult for the user to comprehend the guidance signals in time, to allow fast work. A newer device, called GuideCane, effectively overcomes this problem. The GuideCane uses the same mobile robotics technology as the NavBelt but is a wheeled device pushed ahead of the user via an attached cane. When the Guide Cane detects an obstacle, it steers around it. The user immediately feels this steering action and can follow the Guide Cane’s new path easily without any conscious effort. The mechanical, electrical and software components, usermachine interface and the prototypes of the two devices are described below.
Quantum Dot Lasers:
Seminar Description:The infrastructure of the Information Age has to date relied upon advances in microelectronics to produce integrated circuits that continually become smaller, better, and less expensive. The emergence of photonics, where light rather than electricity is manipulated, is posed to further advance the Information Age. Central to the photonic revolution is the development of miniature light sources such as the Quantum dots(QDs). Today, Quantum Dots manufacturing has been established to serve new datacom and telecom markets. Recent progress in microcavity physics, new materials, and fabrication technologies has enabled a new generation of high performance QDs. This presentation will review commercial QDs and their applications as well as discuss recent research, including new device structures such as composite resonators and photonic crystals Semiconductor lasers are key components in a host of widely used technological products, including compact disk players and laser printers, and they will play critical roles in optical communication schemes. The basis of laser operation depends on the creation of non-equilibrium populations of electrons and holes, and coupling of electrons and holes to an optical field, which will stimulate radiative emission. . Other benefits of quantum dot active layers include further reduction in threshold currents and an increase in differential gain-that is, more efficient laser operation.

0 comments:

Post a Comment

Advertizement

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Premium Wordpress Themes